Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.187
Filtrar
1.
ACS Appl Mater Interfaces ; 16(14): 17300-17312, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557010

RESUMO

Early secretory antigenic target-6 (ESAT-6) is regarded as the most immunogenic protein produced by Mycobacterium tuberculosis, whose detection is of great clinical significance for tuberculosis diagnosis. However, the detection of the ESAT-6 antigen has been hampered by the expensive cost and complex experimental procedures, resulting in low sensitivity. Herein, we developed a titanium carbide (Ti3C2Tx)-based aptasensor for ESAT-6 detection utilizing a triple-signal amplification strategy. First, acetylene black (AB) was immobilized on Ti3C2Tx through a cross-linking reaction to form the Ti3C2Tx-AB-PAn nanocomposite. Meanwhile, AB served as a conductive bridge, and Ti3C2Tx can synergistically promote the electron transfer of PAn. Ti3C2Tx-AB-PAn exhibited outstanding conductivity, high electrochemical signals, and abundant sites for the loading of ESAT-6 binding aptamer II (EBA II) to form a novel signal tag. Second, N-CNTs were adsorbed on NiMn layered double hydride (NiMn LDH) nanoflowers to obtain NiMn LDH/N-CNTs, exhibiting excellent conductivity and preeminent stability to be used as electrode modification materials. Third, the biotinylated EBA (EBA I) was immobilized onto a streptavidin-coated sensing interface, forming an amplification platform for further signal enhancement. More importantly, as a result of the synergistic effect of the triple-signal amplification platform, the aptasensor exhibited a wide detection linear range from 10 fg mL-1 to 100 ng mL-1 and a detection limit of 4.07 fg mL-1 for ESAT-6. We envision that our aptasensor provides a way for the detection of ESAT-6 to assist in the diagnosis of tuberculosis.


Assuntos
Compostos de Anilina , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Mycobacterium tuberculosis , Tuberculose , Humanos , Acetileno , Adsorção , Limite de Detecção , Titânio , Tuberculose/diagnóstico , Estreptavidina , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos
2.
J Environ Manage ; 357: 120800, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579471

RESUMO

Calcium carbide residue (CCR), a by-product of the acetylene industry, is generated at a rate of 136 million tonnes per year, posing significant environmental risks. This review examines the potential utilisation of CCR in soil stabilisation, focusing on its stabilisation mechanism, performance in improving mechanical properties, environmental safety, and sustainability. The aim is to identify future research directions for CCR-based stabilisation to promote its broader application, and to provide references for managing similar Ca-rich wastes. CCR-based materials demonstrate promising benefits in enhancing various soil properties, such as uniaxial strength, swelling properties, triaxial shear behaviour, compressibility, and dynamic responses, while also reducing the mobility of contaminants. Compared to conventional stabilisers, CCR-based materials exhibit comparable performance in soil improvement, environmental impact and safety, and economic feasibility. However, further research is required to delve deeper into stabilisation mechanisms, mechanical properties, and stability of contaminants for the soil treated with CCR-based materials under diverse conditions.


Assuntos
Acetileno/análogos & derivados , Resíduos Industriais , Solo , Solo/química , Cálcio
3.
Environ Sci Technol ; 58(14): 6274-6283, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38531380

RESUMO

Microbial aerobic cometabolism is a possible treatment approach for large, dilute trichloroethene (TCE) plumes at groundwater contaminated sites. Rapid microbial growth and bioclogging pose a persistent problem in bioremediation schemes. Bioclogging reduces soil porosity and permeability, which negatively affects substrate distribution and contaminant treatment efficacy while also increasing the operation and maintenance costs of bioremediation. In this study, we evaluated the ability of acetylene, an oxygenase enzyme-specific inhibitor, to decrease biomass production while maintaining aerobic TCE cometabolism capacity upon removal of acetylene. We first exposed propane-metabolizing cultures (pure and mixed) to 5% acetylene (v v-1) for 1, 2, 4, and 8 d and we then verified TCE aerobic cometabolic activity. Exposure to acetylene overall decreased biomass production and TCE degradation rates while retaining the TCE degradation capacity. In the mixed culture, exposure to acetylene for 1-8 d showed minimal effects on the composition and relative abundance of TCE cometabolizing bacterial taxa. TCE aerobic cometabolism and incubation conditions exerted more notable effects on microbial ecology than did acetylene. Acetylene appears to be a viable approach to control biomass production that may lessen the likelihood of bioclogging during TCE cometabolism. The findings from this study may lead to advancements in aerobic cometabolism remediation technologies for dilute plumes.


Assuntos
Água Subterrânea , Tricloroetileno , Tricloroetileno/metabolismo , Acetileno/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Biomassa
4.
J Inorg Biochem ; 255: 112543, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554579

RESUMO

Acetylene hydratase is currently the only known mononuclear tungstoenzyme that does not catalyze a net redox reaction. The conversion of acetylene to acetaldehyde is proposed to occur at a W(IV) active site through first-sphere coordination of the acetylene substrate. To date, a handful of tungsten complexes have been shown to bind acetylene, but many lack the bis(dithiolene) motif of the native enzyme. The model compound, [W(O)(mnt)2]2-, where mnt2- is 1,2-dicyano-1,2-dithiolate, was previously reported to bind an electrophilic acetylene substrate, dimethyl acetylenedicarboxylate, and characterized by FT-IR, UV-vis, potentiometry, and mass spectrometry (Yadav, J; Das, S. K.; Sarkar, S., J. Am. Chem. Soc., 1997, 119, 4316-4317). By slightly changing the electrophilic acetylene substrate, an acetylenic-bis(dithiolene)­tungsten(IV) complex has been isolated and characterized by FT-IR, UV-vis, NMR, X-ray diffraction, and X-ray absorption spectroscopy. Activation parameters for complex formation were also determined and suggest coordination-sphere reorganization is a limiting factor in the model complex reactivity.


Assuntos
Acetileno , Tungstênio , Acetileno/química , Tungstênio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Hidroliases/química
5.
Bioresour Technol ; 398: 130480, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395235

RESUMO

The control of emissions of short-chain hydrocarbons with different structures is critical for the petrochemical industry. Herein, three two-carbon-containing (C2) hydrocarbons, ethane, ethylene, and acetylene, were chosen as pollutants to study the effects of chemical structure of hydrocarbons on removal performance and microbial responses in biotrickling filters. Results showed that the removal efficiency (RE) of C2 hydrocarbons followed the sequence of acetylene > ethane > ethylene. When the inlet loading rate was 30 g/(m3·h) and the empty bed residence time was 60 s, the RE of ethane, ethylene, and acetylene was 57 ± 4.0 %, 49 ± 1.0 %, and 84 ± 2.7 %, respectively. The high water solubility resulted in the high removal of C2 hydrocarbons, while a low surface tension enhanced the removal of C2 hydrocarbons. Additionally, the microbial community, enzyme activity, and extracellular properties of microorganisms also contributed to the difference in C2 hydrocarbon removal. These results could be referred for the effective control of light hydrocarbon emissions.


Assuntos
Filtração , Hidrocarbonetos , Biodegradação Ambiental , Filtração/métodos , Acetileno , Etano , Etilenos
6.
Environ Sci Pollut Res Int ; 31(10): 14971-14979, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38285253

RESUMO

This study was conducted to investigate the efficacy of smoke-water obtained from biotics, for example coconut shells, rice husk, and pine cones on banana ripening, and compared with calcium carbide. Bio-chemical composition and remarkable bactericidal effect towards ATCC cultures of Escherichia coli, Staphylococcus aureus, and Bacillus cereus discovered the biological safety of the smoke-water in all collected smoke-water samples. Further, inductively coupled plasma mass spectrometry (ICP-MS) was carried out to investigate heavy metals; however, no traces were found in all collected samples. Consequently, it is proposed that heavy metal-free smoke-water obtained from various biotics series might be employed as ultrasafe fruit ripening as compared to calcium carbide (CaC2) that was found with heavy metal traces.


Assuntos
Acetileno/análogos & derivados , Metais Pesados , Musa , Fumaça , Análise Custo-Benefício , Metais Pesados/análise
7.
Sci Rep ; 14(1): 2121, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267498

RESUMO

To meet the increasing consumer demands for fruits, the implementation of artificial ripening techniques using synthetic chemicals has become increasingly commonplace among less ethical fruit production companies in today's global market. The objective of present work was to establish a difference in the physiological and biochemical and profiles of naturally ripened mangoes vs. those ripened by application of synthetic calcium carbide and ethylene. The application of calcium carbide at 10 g/kg mangoes resulted early ripening in 2 days, with a 3-day shelf life, as compared with 5 and 6 days, for mangoes ripened by ethylene and naturally, respectively. Higher levels of calcium carbide reduced moisture, fiber, protein and carbohydrates content and increased the ash content of mangoes, as compared to higher levels of ethylene, whereas in naturally ripened mangoes the content percentages were 80.21, 3.57, 3.05 6.27 and 4.74, respectively. Artificial ripening resulted in significant loss of ascorbic, citric and malic acid, as values were recorded 35.94, 2.12 and 0.63 mg/g, respectively, in mangoes ripened with 10 g/kg of calcium carbide. However, in naturally ripened mangoes the amounts of these acids were recorded significantly (p < 0.05) high as 52.29, 3.76 and 1.37 mg/g, respectively. There was an increase in total soluble solids (TSS) and reducing sugars, and a decrease in titratable acidity in calcium carbide (10 g/kg) treated mangoes. Elemental analyses revealed high levels of minerals in naturally ripened mangoes, with significant values of iron (0.45 mg/100 g), zinc (0.24 mg/100 g) and copper (0.17 mg/100 g). The organoleptic quality of the fruit decreased significantly (p < 0.05) as a result of the use of calcium carbide. Although use of artificial ripening techniques provides speedy ripening of mangoes, there are obvious limitations. Consequently, natural ripening should be promoted in order to have safer and more nutritious mangoes.


Assuntos
Mangifera , Animais , Etilenos , Acetileno , Aves
8.
ACS Sens ; 9(1): 217-227, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38165082

RESUMO

Acetylene (C2H2) is a gas that can cause explosions in transformers even at low concentrations. Gas chromatography (GC) or photoacoustic spectroscopy (PAS) have been used to detect C2H2 during dissolved gas analysis (DGA), but they are not suitable for monitoring numerous transformers at substations. Even though metal oxide semiconductor (MOS) based C2H2 sensors have drawn much attention as a potential solution, existing MOS-based C2H2 sensors have low sensitivity toward C2H2 in the transformer environment (<2% O2 concentrations). This study develops high-performance C2H2 gas sensors for DGA using a heterostructure of CuO/ZnO (CZ) via the electrospinning process. Performance of various ratios of CZ composite nanofibers are compared in a transformer-like environment, and the optimal composition of CZ nanofibers for detection of C2H2 at 2% O2 concentration is proposed. The CuO:ZnO = 8:2 (CZ2) sensor achieves the highest response (Rg/Ra = 7.6 against 10 ppm of C2H2) toward low concentration of C2H2 at 200 °C with good stability (>10 h). In addition, the CZ2 sensor also shows a high selectivity (>5 times) to coexisting transformer oil gases which are H2, CH4, C2H4, C2H6, CO, and CO2. Overall, this study is the first to demonstrate a high performing DGA sensor under 2% O2 concentration that can provide a practical solution to monitoring the low concentration of C2H2 in transformers effectively.


Assuntos
Nanofibras , Óxido de Zinco , Acetileno , Fontes de Energia Elétrica , Gases , Óxidos
9.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119629, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37981034

RESUMO

The migratory and invasive potential of tumour cells relies on the actin cytoskeleton. We previously demonstrated that the tricyclic compound, TBE-31, inhibits actin polymerization and here we further examine the precise interaction between TBE-31 and actin. We demonstrate that iodoacetamide, a cysteine (Cys) alkylating agent, interferes with the ability of TBE-31 to interact with actin. In addition, in silico analysis identified Cys 217, Cys 272, Cys 285 and Cys 374 as potential binding sites for TBE-31. Using mass spectrometry analysis, we determined that TBE-31 associates with actin with a stoichiometric ratio of 1:1. We mutated the identified cysteines of actin to alanine and performed a pull-down analysis with a biotin labeled TBE-31 and demonstrated that by mutating Cys 374 to alanine the association between TBE-31 and actin was significantly reduced, suggesting that TBE-31 binds to Cys 374. A characterization of the NIH3T3 cells overexpressing eGFP-actin-C374A showed reduced stress fiber formation, suggesting Cys 374 is necessary for efficient incorporation into filamentous actin. Furthermore, migration of eGFP-Actin-WT expressing cells were observed to be inhibited by TBE-31, however fewer eGFP-Actin-C374A expressing cells were observed to migrate compared to the cells expressing eGFP-Actin-WT in the presence or absence of TBE-31. Taken together, our results suggest that TBE-31 binds to Cys 374 of actin to inhibit actin stress fiber formation and may potentially be a mechanism through which TBE-31 inhibits cell migration.


Assuntos
Actinas , Cisteína , Fenantrenos , Camundongos , Animais , Actinas/genética , Actinas/metabolismo , Cisteína/genética , Cisteína/metabolismo , Acetileno , Alcinos , Fibras de Estresse , Células NIH 3T3 , Movimento Celular , Alanina
10.
Nat Prod Res ; 38(4): 589-593, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36855235

RESUMO

Synergistic bioassay-guided isolation of the extracts of Artemisia rupestris L, which belongs to the family Asteraceae, afforded two acetylenic spiroketal enol ethers, namely rupesdiynes A (1) and B (2). Their structures were determined based on spectroscopic analysis and experimental and calculated ECD investigations. The two compounds exhibited synergistic activity and were able to reduce the minimum inhibitory concentration (MIC) of oxacillin four-fold, with a fractional inhibitory concentration index (FICI) of 0.5 in combination with oxacillin against the oxacillin-resistant EMRSA-16. Biofilm formation inhibitory and Ethidium bromide (EtBr) efflux assay were further employed to verify the possible mechanism of the synergistic antibacterial effect. Additionally, molecular docking studies were conducted to investigate the binding affinities of the two compounds with penicillin-binding protein 2a (PBP2a) of EMRSA-16. Taken together, rupesdiynes A (1) and rupesdiyne B (2) showed moderate synergistic activity against EMRSA-16 with oxacillin via inhibiting biofilm formation and efflux pump activity, respectively.


Assuntos
Artemisia , Furanos , Staphylococcus aureus Resistente à Meticilina , Compostos de Espiro , Simulação de Acoplamento Molecular , Acetileno/metabolismo , Acetileno/farmacologia , Alcinos/farmacologia , Éteres/metabolismo , Éteres/farmacologia , Extratos Vegetais/química , Antibacterianos , Oxacilina/farmacologia , Oxacilina/metabolismo , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico
11.
J Environ Sci (China) ; 139: 182-192, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105046

RESUMO

Waste calcium carbide slags (CS), which are widely applied to desulfurisation, are not typically used in denitration. Herein, to well achieve waste control by waste, a facile and high-efficiency denitration strategy is developed using KOH to modify the calcium carbide slags (KCS). Various KCS samples were investigated using a series of physical and chemical characterisations. The performance test results showed that the KOH concentration and reaction temperature are the main factors affecting the denitration efficiency of KCS, and CS modified with 1.5 mol/L KOH (KCS-1.5) can achieve 100% denitration efficiency at 300°C. Such excellent removal efficiency is due to the catalytic oxidation of the oxygen-containing functional groups derived from the KCS. Further studies showed that KOH treatment significantly increased the concentration of oxygen vacancies, nitro compounds, and basic sites of CS. This study provides a novel strategy for the resource utilisation of waste CS in the future.


Assuntos
Acetileno , Oxigênio , Temperatura , Oxirredução , Oxigênio/química
12.
Chem Commun (Camb) ; 59(89): 13297-13300, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37859547

RESUMO

A new graphdiyne-encapsulated Au nanosphere (Au@GDY) material was fabricated, which possessed an amplified Raman signal of acetylene linkage and produced bright, stable, and distinct signals in the cellular Raman-silent region. Its signal repeatability is far superior to that of alkyne-containing molecules. This work provides promise as an alkyne-tag for Raman imaging of living cells.


Assuntos
Grafite , Nanosferas , Alcinos , Acetileno
13.
J Med Chem ; 66(20): 13918-13945, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37816126

RESUMO

A series of 25 chiral anti-cancer lipidic alkynylcarbinols (LACs) were devised by introducing an (hetero)aromatic ring between the aliphatic chain and the dialkynylcarbinol warhead. The resulting phenyl-dialkynylcarbinols (PACs) exhibit enhanced stability, while retaining cytotoxicity against HCT116 and U2OS cell lines with IC50 down to 40 nM for resolved eutomers. A clickable probe was used to confirm the PAC prodrug behavior: upon enantiospecific bio-oxidation of the carbinol by the HSD17B11 short-chain dehydrogenase/reductase (SDR), the resulting ynones covalently modify cellular proteins, leading to endoplasmic reticulum stress, ubiquitin-proteasome system inhibition, and apoptosis. Insights into the design of LAC prodrugs specifically bioactivated by HSD17B11 vs its paralogue HSD17B13 were obtained. The HSD17B11/HSD17B13-dependent cytotoxicity of PACs was exploited to develop a cellular assay to identify specific inhibitors of these enzymes. A docking study was performed with the HSD17B11 AlphaFold model, providing a molecular basis of the SDR substrates mimicry by PACs. The safety profile of a representative PAC was established in mice.


Assuntos
Alcinos , Antineoplásicos , Camundongos , Animais , Alcinos/farmacologia , Alcinos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Acetileno , Estrutura Molecular , Lipídeos/química , Linhagem Celular Tumoral
14.
Environ Sci Technol ; 57(37): 14036-14045, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37665676

RESUMO

Chloroethenes (CEs) as common organic pollutants in soil could be attenuated via abiotic and biotic dechlorination. Nonetheless, information on the key catalyzing matter and their reciprocal interactions remains scarce. In this study, FeS was identified as a major catalyzing matter in soil for the abiotic dechlorination of CEs, and acetylene could be employed as an indicator of the FeS-mediated abiotic CE-dechlorination. Organohalide-respiring bacteria (OHRB)-mediated dechlorination enhanced abiotic CEs-to-acetylene potential by providing dichloroethenes (DCEs) and trichloroethene (TCE) since chlorination extent determined CEs-to-acetylene potential with an order of trans-DCE > cis-DCE > TCE > tetrachloroethene/PCE. In contrast, FeS was shown to inhibit OHRB-mediated dechlorination, inhibition of which could be alleviated by the addition of soil humic substances. Moreover, sulfate-reducing bacteria and fermenting microorganisms affected FeS-mediated abiotic dechlorination by re-generation of FeS and providing short chain fatty acids, respectively. A new scenario was proposed to elucidate major abiotic and biotic processes and their reciprocal interactions in determining the fate of CEs in soil. Our results may guide the sustainable management of CE-contaminated sites by providing insights into interactions of the abiotic and biotic dechlorination in soil.


Assuntos
Poluentes Ambientais , Tricloroetileno , Cloreto de Vinil , Solo , Substâncias Húmicas , Acetileno , Halogenação
15.
Chemosphere ; 340: 139900, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611757

RESUMO

S/mZVI is a promising material for groundwater remediation due to its excellent properties. However, the reactivity and electron selectivity toward target contaminant are critical. Thus, this study investigated the effect of complex groundwater chemistries (Milli-Q water, fresh groundwater and saline groundwater) on the reactivity of S/mZVI toward trichloroethylene (TCE), dechlorination pathway, hydrogen evolution kinetic, electron efficiency and aging behaviors. Results showed that sulfidation appreciably increased the reactivity and electron selectivity. The major degradation product of TCE dechlorination by S/mZVI was acetylene, which was consistent with TCE dechlorination by ß-elimination. Moreover, reductive ß-elimination was still the dominant dechlorination pathway for the application of S/mZVI in three groundwater conditions. However, the rates and the quantities of major products from TCE degradation varied significantly. S/mZVI in saline groundwater can maintain the reactivity towardTCE due to the protection of Fe0 by Fe3O4 deposited on the surface. Thus, the higher TCE removal efficiency and less hydrogen accumulation resulted in the greatest electron efficiency (4.3-79.2%). Overall, S/mZVI was more effective for the application in saline groundwater. This study proved insight into the comprehensive evaluation and implications for the application of S/mZVI based technologies in saline contaminated groundwater.


Assuntos
Água Subterrânea , Tricloroetileno , Acetileno , Hidrogênio , Ferro
16.
J Environ Manage ; 345: 118783, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37598494

RESUMO

Calcium carbide residue (CCR) is a waste obtained from the production of acetylene gas by the hydration reaction of calcium carbide. This residue is generated in large quantities annually and requires appropriate disposal. The main composition of the residue is calcium hydroxide (Ca(OH)2). Ca(OH)2 can react with CO2 gas and form CaCO3 particles. This process is well known but not very attractive since Ca(OH)2 is obtained from limestone using an energy-intensive thermal conversion process. This paper examined the synthesis of CaCO3 from CCR solutions by capturing CO2 with the aid of triethanolamine (TEA) solutions at doses of 0, 5, 10 and 20% w/w. The precipitated CaCO3 was characterized, and the application of CaCO3 as a filler in epoxy resin was tested. The results showed that the precipitated CaCO3 was mainly calcite, with a 76.6% yield. Cubic calcite was primarily obtained in TEA solutions, whereas small and agglomerated spherical vaterite and cubic calcite particles were formed in non-TEA solutions. The CaCO3-filled epoxy composites showed higher compressive strength than the neat resin. However, the transparency of specimen plates was reduced. These results can serve as guidelines for the application of CCR slurry filtrate obtained from the sedimentation ponds of acetylene plants and help to reduce the amount of wastewater that needs to be treated. CO2 gas from industrial flue gas combined with TEA solution could be applied to precipitate CaCO3 for carbon-neutral manufacturing.


Assuntos
Carbonato de Cálcio , Dióxido de Carbono , Carbonato de Cálcio/química , Dióxido de Carbono/química , Resinas Epóxi , Acetileno
17.
Bioorg Chem ; 139: 106715, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37543015

RESUMO

A combination strategy of 13C NMR and bioinformatics was established to expedite the discovery of acetylenic meroterpenoids from the ascidian-derived fungus Amphichorda felina SYSU-MS7908. This approach led to the identification of 13 acetylenic meroterpenoids (1-13) and four biogenic analogs (14-17), including five new ones named felinoids A-E (1-4 and 15). Their structures and absolute configurations were elucidated using extensive spectroscopy, ECD quantum chemical calculations, and single-crystal X-ray diffraction analysis. Compound 1 possessed a rare cyclic carbonate in natural acetylenic meroterpenoids. The plausible shikimate-terpenoid biosynthetic pathways of 1-4 were also postulated. Five of these isolates exhibited anti-inflammatory activity by inhibiting NO production in LPS-induced RAW264.7 cells (IC50 = 11.6-19.5 µM). Moreover, oxirapentyn E diacetate showed a dose-dependent inhibition of pro-inflammatory cytokines IL-6 and TNF-α. Structural modification of oxirapentyn B yielded 29 new derivatives, among which seven showed improved activity (IC50 < 3 µM) and higher selectivity index (SI > 22). The structure-activity relationship study indicated that 7, 8-epoxy, and 6-acylation were crucial for the activity. These findings may provide a powerful tool to accelerate the discovery of new fungal acetylenic meroterpenoids for future anti-inflammatory drug development.


Assuntos
Acetileno , Urocordados , Animais , Estrutura Molecular , Alcinos , Terpenos/química , Anti-Inflamatórios/química , Espectroscopia de Ressonância Magnética , Fungos
18.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446676

RESUMO

In this study, we report the synthesis of unsubstituted 1,2-benzothiazines through a redox-neutral Rh(III)-catalyzed C-H activation and [4+2]-annulation of S-aryl sulfoximines with vinylene carbonate. Notably, the introduction of an N-protected amino acid ligand significantly enhances the reaction rate. The key aspect of this redox-neutral process is the utilization of vinylene carbonate as an oxidizing acetylene surrogate and an efficient vinylene transfer agent. This vinylene carbonate enables the cyclization with the sulfoximine motifs, successfully forming a diverse array of 1,2-benzothiazine derivatives in moderate to good yields. Importantly, this study highlights the potential of Rh(III)-catalyzed C-H activation and [4+2]-annulation reactions for the synthesis of optically pure 1,2-benzothiazines with high enantiomeric purity.


Assuntos
Acetileno , Aminoácidos , Ciclização
19.
J Org Chem ; 88(13): 8369-8378, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37265177

RESUMO

Ortho-benzyne and 1,2-azaborinine are related by the formal exchange of the CC triple bond by the isoelectronic BN unit. The (2 + 2) and (2 + 4) cycloaddition reactions of 1,2-azaborinine with the different organic π systems (ethene, ethyne, 1,3-butadiene, 1,3-cyclopentadiene, furan, benzene) were examined computationally using density functional, second-order perturbation, and coupled-cluster methods. All reactions of 1,2-azaborinine with the studied substrates are highly exothermic and involve the formation of Lewis acid-base complexes of 1,2-azaborinine and respective π systems. The interaction between the π bond of the substrates and the empty p orbital of the boron atom in these complexes is remarkably strong, resulting in two-step mechanisms for the (2 + 2) and (2 + 4) cycloaddition reactions. Cycloaddition reactions have lower barriers than CH insertion reactions, and (2 + 4) reactions are favored over (2 + 2) cycloadditions.


Assuntos
Acetileno , Derivados de Benzeno , Derivados de Benzeno/química , Acetileno/química , Boro
20.
Inorg Chem ; 62(26): 10256-10262, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37344358

RESUMO

Two-dimensional metal-organic framework (MOF) crystalline materials possess promising potential in the electrochemical sensing process owing to their tunable structures, high specific surface area, and abundant metal active sites; however, developing MOF-based nonenzymatic glucose (Glu) sensors which combine electrochemical activity and environmental stability remains a challenge. Herein, utilizing the tripodic nitrogen-bridged 1,3,5-tris(1-imidazolyl) benzene (TIB) linker, Co2+ and Ni2+, two 2D isomorphic crystalline materials, including Co/Ni-MOF {[Co (TIB)]·2BF4} (CTGU-31) and {[Ni(TIB)]·2NO3} (CTGU-32), with a binodal (3, 6)-connected kgd topological net were firstly synthesized and fabricated with conducting acetylene black (AB). When modified on a glassy carbon electrode, the optimized AB/CTGU-32 (1:1) electrocatalyst demonstrated a higher sensitivity of 2.198 µA µM-1 cm-2, a wider linear range from 10 to 4000 µM, and a lower detection limit (LOD) value (0.09 µM, S/N = 3) compared to previously MOF-based Glu sensors. Moreover, AB/CTGU-32 (1:1) exhibited desirable stability for at least 2000 s during the electrochemical process. The work indicates that MOF-based electrocatalysts are a promising candidate for monitoring Glu and demonstrate their potential for preliminary screening for diabetes.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Carbono/química , Níquel/química , Eletrodos , Acetileno , Glucose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...